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AAS 08-273

GENERALIZED LINEAR COVARIANCE ANALYSIS

J. Russell Carpenter∗ and F. Landis Markley†

We review and extend in two directions the results of prior work on generalized covariance
analysis methods. This prior work allowed for partitioning of the state space into “solve-for”
and “consider” parameters, allowed for differences between the formal values and the true val-
ues of the measurement noise, process noise, and a priori solve-for and consider covariances,
and explicitly partitioned the errors into subspaces containing only the influence of the mea-
surement noise, process noise, and a priori solve-for and consider covariances. In this work,
we explicitly add sensitivity analysis to this prior work, and relax an implicit assumption that
the batch estimator’s anchor time occurs prior to the definitive span. We also apply the method
to an integrated orbit and attitude problem, in which gyro and accelerometer errors, though not
estimated, influence the orbit determination performance. We illustrate our results using two
graphical presentations, which we call the “variance sandpile” and the “sensitivity mosaic,”
and we compare the linear covariance results to confidence intervals associated with ensemble
statistics from a Monte Carlo analysis.

NOTATION CONVENTION

Style Example Connotation

Plain a,A Scalar real number
Bold x,X Physical vector, i.e. an “arrow” in 3-dimensional, physical space
Calligraphic I, C Coordinate frame in which physical vectors may be expressed
Sans Serif P,Φ Column, row, or matrix of scalars

INTRODUCTION

In Refs. 1 and 2, Markley and others proposed a novel approach to linear covariance analysis, for both batch
and sequential estimators. Unlike the methods described in Maybeck3 and Gelb,4 Markley, et al.’s method
allowed for the partitioning of the state space into “solve-for” and “consider” parameters. Unlike the method
described in Tapley, et al.,5 Markley, et al.’s method allowed for differences between the formal values and
the true values of the measurement noise, process noise, and a priori solve-for and consider covariances.
Unlike the method described in Jazwinski,6 the method of Markley et al. explicitly partitions the errors into
subspaces containing only the influence of the measurement noise, process noise, and a priori solve-for and
consider covariances.

In this paper, we review and extend in two directions the results of Refs. 1 and 2, by explicitly adding sen-
sitivity analysis, and by generalizing the earlier results, which implicitly assumed that the batch estimator’s
anchor time occurs prior to the definitive span. We also apply the method to an integrated orbit and attitude
problem, in which gyro and accelerometer errors, though not estimated, influence the orbit determination per-
formance. We illustrate our results using two graphical presentations, which we call the “variance sandpile”
and the “sensitivity mosaic,” and we compare the linear covariance results to confidence intervals associated
with ensemble statistics from a Monte Carlo analysis.

∗Flight Dynamics Analysis Branch, NASA Goddard Space Flight Center, Code 595, Greenbelt, MD 20771.
†GN&C Systems Branch, NASA Goddard Space Flight Center, Code 591, Greenbelt, MD 20771

1



REVIEW AND UPDATE OF METHOD

We summarize the generalized linear covariance analysis algorithm of Refs. 1 and 2 here. The algorithm
performs a general covariance analysis linearized about a given reference trajectory, X̄(t). It assumes that
true values and formal values may differ for the a priori covariance, measurement noise covariance, and pro-
cess noise power spectral density. We denote these parameters as Po−, P̂o−, R, R̂, Q, and Q̂, respectively.
The (error-free) dynamics and measurement partials, A(t) and H(t), and the process and measurement noise
covariances, may be time-varying∗. The algorithm assumes that linear, possibly time-varying, transforma-
tions partition the state space into a “solve-for” state, s(t), which is to be estimated from the measurements,
and a “consider” state, c(t), which will not be estimated. The mapping of the state-space into solve-for and
consider subspaces is defined according to

s(t) = S(t)x(t), c(t) = C(t)x(t) (1)

where x(t) = X(t) − X̄(t) is the linear deviation of the estimate from the true state. Mapping back into the
original state space may be accomplished as follows:

M(t) =
[

S(t)
C(t)

]
, M−1(t) = [S̃(t), C̃(t)] (2)

x(t) = S̃(t)s(t) + C̃(t)c(t) (3)

The main computational result of the original algorithm is a partitioning of the contributions to the total error
from a priori uncertainty, measurement noise, and process noise. We denote the true and formal covariances
of these error partitions as Pa, P̂a, Pv , P̂v , Pw, and P̂w, respectively. The total true variance and total formal
variance are, respectively, the sums of these partitions:

P = Pa + Pv + Pw, P̂ = P̂a + P̂v + P̂w (4)

Another way of looking at the results is via difference between true and formal values of the partitions,
defined as

∆Pa = SPaST − P̂a, ∆Pv = SPvST − P̂v, ∆Pw = SPwST − Pw (5)

It is perhaps easiest to understand the algorithm as it is applied to the sequential Kalman filter, so we begin
with this. We then summarize the application of the method to the batch estimator, and generalize the batch
application so as to accommodate an arbitrary location of the anchor time. We also generalize the batch form
of the algorithm so that it will propagate the true and estimated covariances, and the sensitivity matrix, over a
specified time span that does not necessarily correspond to the definitive span. Next, we add to the previous
work a computation of the sensitivity to a priori errors, and show how the previous work can be used to study
sensitivity to measurement and process noise.

Sequential Kalman Filter Form Let

Φss(ti, to) = S(ti)Φ(ti, to)S̃(to), Hs(ti) = H(ti)S̃(ti) (6)

and

Q̂d(ti, ti−1) =
∫ ti

ti−1

Φss(ti, τ)Q̂(τ)ΦT

ss(ti, τ)dτ (7)

Qd(ti, ti−1) =
∫ ti

ti−1

Φ(ti, τ)Q(τ)ΦT(ti, τ)dτ (8)

∗The assumption that A(t) and H(t) are error-free is not as limiting as may at first seem, since use of incorrect parameters or model
truncations by the estimator will be accommodated in the consider state analysis.
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where the state transition matrix Φ(ti, to) is derived from A(t) in the usual way, e.g. as specified in Ref. 7.
Then, propagate the various covariance partitions between measurement updates as follows:

P̂a(t−i ) = Φss(ti, ti−1)P̂a(t+i−1)ΦT

ss(ti, ti−1), P̂a(t−1 ) = P̂o− (9)

Pa(t−i ) = Φ(ti, ti−1)Pa(t+i−1)ΦT(ti, ti−1), Pa(t−1 ) = Po− (10)

P̂v(t−i ) = Φss(ti, ti−1)P̂v(t+i−1)ΦT

ss(ti, ti−1), P̂v(t−1 ) = 0 (11)

Pv(t−i ) = Φ(ti, ti−1)Pv(t+i−1)ΦT(ti, ti−1), Pv(t−1 ) = 0 (12)

P̂w(t−i ) = Φss(ti, ti−1)P̂w(t+i−1)ΦT

ss(ti, ti−1) + Q̂d(ti, ti−1), P̂w(t−1 ) = 0 (13)

Pw(t−i ) = Φ(ti, ti−1)Pw(t+i−1)ΦT(ti, ti−1) + Qd(ti, ti−1), Pw(t−1 ) = 0 (14)

Note that the a priori covariance is applied only to the a priori partitions, and that process noise is applied
only to the process noise partitions.

At each measurement, update the various partitions with a Kalman gain based on the formal covariances:

Ki = P̂(t−i )HT

s(ti)[Hs(ti)P̂(t−i )HT

s(ti) + R̂(ti)]
−1

(15)

P̂a(t+i ) = [I− KiHs(ti)]P̂a(t−i )[I− KiHs(ti)]
T (16)

Pa(t+i ) = [I− S̃(ti)KiH(ti)]Pa(t−i )[I− S̃(ti)KiH(ti)]
T

(17)

P̂v(t+i ) = [I− KiHs(ti)]P̂v(t−i )[I− KiHs(ti)]
T + KiR̂(ti)KT

i (18)

Pv(t+i ) = [I− S̃(ti)KiH(ti)]Pv(t−i )[I− S̃(ti)KiH(ti)]
T

+ S̃(ti)KiR(ti)KT

i S̃T(ti) (19)

P̂w(t+i ) = [I− KiHs(ti)]P̂w(t−i )[I− KiHs(ti)]
T (20)

Pw(t+i ) = [I− S̃(ti)KiH(ti)]Pw(t−i )[I− S̃(ti)KiH(ti)]
T

(21)

Note that the measurement noise is applied only to the measurement noise partitions.

Batch Estimator Form The batch update maps all the innovations to an anchor time, which is associated
with any a priori information, but which is not necessarily prior to the definitive data span; to emphasize
this, we denote the anchor time with the subscript ‘∗’ rather than ‘o.’ The a priori and measurement noise
partitions can be expressed as follows:

Ki = [P̂−1

∗− +
∑

jΦT

ss(tj , t∗)HT

s(tj)R̂−1

j Hs(tj)Φss(tj , t∗)]
−1

ΦT

ss(ti, t∗)HT

s(ti)R̂−1

i (22)

P̂a(t+∗ ) = [I−
∑

iKiHs(ti)Φss(ti, t∗)]P̂∗−[I−
∑

iKiHs(ti)Φss(ti, t∗)]
T (23)

Pa(t+∗ ) = [I−
∑

iS̃(ti)KiH(ti)Φ(ti, t∗)]P∗−[I−
∑

iS̃(ti)KiH(ti)Φ(ti, t∗)]
T

(24)

P̂v(t+∗ ) =
∑

iKiR̂(ti)KT
i , Pv(t+∗ ) =

∑
iS̃(ti)KiR(ti)KT

i S̃T(ti) (25)

The contribution to the batch estimator’s formal variance from process noise is zero, since the batch filter
does not model process noise; however, if there is really process noise present, then the true variance due to
process noise is

Pw(t+∗ ) = Υ

 Qd(t∗; t1, t1) Qd(t∗; t1, t2) · · ·
Qd(t∗; t2, t1) Qd(t∗; t2, t2) · · ·

...
...

. . .

ΥT (26)

where
Υ =

[
S̃(t1)K1H(t1)Φ(t1, t∗) S̃(t2)K2H(t2)Φ(t2, t∗) · · ·

]
(27)

and

Qd(t∗; ti, tj) =


∫min(ti,tj)

t∗
Φ(ti, τ)Q(τ)ΦT(tj , τ)dτ t∗ < ti, t∗ < tj ,∫ t∗

max(ti,tj)
Φ(ti, τ)Q(τ)ΦT(tj , τ)dτ ti < t∗, tj < t∗,

0 otherwise

(28)
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which reduces to

Qd(t∗; ti, tj) =



Qd(ti, t∗)ΦT(tj , ti) t∗ < ti ≤ tj ,
Φ(ti, tj)Qd(tj , t∗) t∗ ≤ tj ≤ ti,
Φ(ti, tj)Qd(t∗, tj) ti ≤ tj < t∗,

Qd(t∗, ti)ΦT(tj , ti) tj ≤ ti < t∗,

0 otherwise

(29)

where we note that if ti = tj > t∗, then the definition above reduces to the usual definition of the process
noise covariance, i.e. Qd(t∗; ti, ti) = Qd(ti, t∗). If ti = tj < t∗ then Qd(t∗; ti, ti) = Qd(t∗, ti), i.e. we have
the usual process noise covariance, but it increases as time flows backwards. In the same fashion, the first and
fourth cases in Eq. 29 produce the same numerical result, with the former corresponding to forward and the
latter to reverse time flow. The same holds for the second and third cases in Eq. 29.

To propagate the estimated and true covariances, respectively, over a specified time interval (forward or
backward in time), use the following:

P̂a(t) = Φss(t, t∗)P̂a(t+∗ )ΦT

ss(t, t∗), Pa(t) = Φ(t, t∗)Pa(t+∗ )ΦT(t, t∗) (30)

P̂v(t) = Φss(t, t∗)P̂v(t+∗ )ΦT

ss(t, t∗), Pv(t) = Φ(t, t∗)Pv(t+∗ )ΦT(t, t∗) (31)

Pw(t) = Φ(t, t∗)Pw(t+∗ )ΦT(t, t∗) + Φ(t, t∗)Nd(t) + NT

d(t)ΦT(t, t∗) + Qd(t∗; t, t) (32)

where
Nd(t) = −

∑
iS̃(ti)KiH(ti)Qd(t∗; t, ti) (33)

We note that when we allow for time reversal here, we are considering the postdiction problem; the fact that
the process noise terms increase the uncertainty as time runs backwards reflects our increasing uncertainty
as we propagate further into the past. One should not infer from this work that we take any position as to
whether or not a physical Brownian process is diffusing backward in time.

Sensitivity Matrix Time and Measurement Update The sensitivity matrix shows the linear sensitivity of
the solution at a specified time to mismodeling of the distributions of the a priori parameters (both solve-fors
and considers). For the sequential filter, it is given by

Σa(ti) = [I− S̃(ti)KiH(ti)]Φ(ti, ti−1)Σa(ti−1), Σa(to) = [S̃(to), C̃(to)] (34)

and for the batch estimator, it is

Σa(t) = S(t)Φ(t, t∗)[I−
∑k

i=1S̃(ti)KiH(ti)Φ(ti, t∗)][S̃(t∗), C̃(t∗)] (35)

Although it is possible to compute the sensitivities to each particular measurement and process noise sam-
ple†, this does not appear to be particularly useful. Instead, suppose R and R̂ have the same structure, but
differ only by a scalar multiplier, i.e., R = r ·R̄ and R̂ = r̂ ·R̄ (for example, let R̄ = I). Then, for the sequential
filter,

∆Pv = SPvST − P̂v (36)

will contain terms of the form KKT(r − r̂). In this case, if one chooses (r − r̂) = 1, then ∆Pv will represent
the sensitivity to measurement noise mismodeling. Similarly, when Q = q · I, and Q̂ = q̂ · I, then (q − q̂)
will factor out of the process noise partition, so that if one chooses q − q̂ = 1, then ∆Pw will represent the
sensitivity to process noise mismodeling. For the batch estimator,

∆Pv = KR̄KT(r − r̂). (37)

In this case, if one chooses (r− r̂) = 1, ∆Pv will represent the sensitivity to measurement noise mismodeling
across the entire definitive data span. Similarly, when Q = q · Q̄, q will factor out of the (true) process noise
partition, so that if one chooses q = 1, ∆Pw (which equals Pw since the batch has no process noise) will
represent the sensitivity to process noise mismodeling across the entire interval of interest.
†It is particularly easy to show that for the batch estimator, the sensitivity to measurement and process noise inputs is

Σvk(t∗) = −Kk, Σwk(t∗) = −KkH(tk)
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INERTIAL NAVIGATION SYSTEM MODEL
Next, we apply the generalized method to a study of the effect of inertial navigation system (INS) parame-

ters on an entry trajectory. This section describes the model of the INS. As part of this description, we address
some issues related to attitude error modeling which appear to us to have never been adequately described in
other works.

Our model includes additive bias and noise terms, and multiplicative errors. One of the multiplicative
errors is associated with uncertainties in the scale factors used in the devices to convert their internal units
into output units. The other error considered is that caused by small misalignments in the mounting of the
gyros and accelerometers, so that they are not quite orthogonal to one another. This model shares many of
the characteristics of the model used in Ref. 8, where Space Shuttle navigation performance with strapdown
systems was evaluated, as well as with the model described in Ref. 9, a popular short course on inertial
navigation systems. Similar models for platform-type inertial systems are described in Refs. 10 and 11.
A more complicated model that shares some similarities is that of Ref. 12, in which a Kalman filter for
calibration and alignment of inertial navigation systems is described.

Gyro Model

INS are generally of two types, “platform” and “strapdown,” which use the gyros in a somewhat different
fashion. The platform type consists of a set of gimbals that interconnect the vehicle body to a rigid platform
on which the gyros are mounted. This arrangement allows the axes along which the gyros are sensitive to
rotate freely with respect to the vehicle body. A feedback system attempts to null the gyro outputs, which
thus maintains the gyro platform approximately fixed in inertial space. The vehicle attitude with respect to
inertial space is then given by reading out the gimbal angles. The strapdown type, which has largely replaced
the platform type in current usage, dispenses with the gimbal system and rigidly fixes the gyros to the vehicle
body. The strapdown INS computationally integrates the gyro outputs so as to keep track of the orientation
of the body with respect to the inertial frame.

In each type of INS, errors in the gyro output affect the determination of the vehicle attitude, but in a
somewhat different manner. In a platform INS, gyro output errors cause the platform to physically drift with
respect to the true inertial frame. The strapdown INS measures at each instant an incremental change in the
angular position of the body with respect to some inertial frame. Thus, errors in the gyro outputs create error
in the computational accumulation of these angular velocity increments.

To illustrate the implications of this difference, we assume (without loss of generality) that the INS rep-
resents the attitude as a direction cosine matrix that maps from the INS case frame‡ to the inertial frame,
and we denote its estimate of the attitude as M̂IC . One may view this estimate as composed of either of the
following successive rotations:

M̂IC = MICMCĈ , or M̂IC = MÎIMIC (38)

We assume that we can represent MCĈ and MÎI as small angle rotations:

MCĈ = I− θ× and MÎI = I−ψ× (39)

where the superscript ‘×’ indicates that the elements of the vector are arranged in a skew-symmetric matrix
such that a×b = a × b. Note that θ and ψ are in general two different sets of small angle rotations – it is
not necessarily the case that they are the same vector expressed in two different coordinate systems§. The
(coordinate-independent) derivatives of these vectors with respect to the case and inertial frames are related
by

Id

dt
θ =

Cd

dt
θ + IωC × θ and

Id

dt
ψ =

Cd

dt
ψ + IωC ×ψ (40)

‡For either type of INS, the case frame is rigidly fixed to the vehicle body, but may not be aligned with the body axes.
§However, if these rotations arise from two optimal attitude estimators processing the same data from the same initial conditions, the

constraint that both estimators produce the optimal estimate implies that θ and ψ do become the same vector expressed in two different
coordinate systems.
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where we denote the angular velocity of frame C in frame I as IωC . Similarly, the angular velocity estimate
of the INS, ÎωC , will be corrupted by the gyro output error, and we may view this estimate as either

ÎωC = IωC + CωĈ or ÎωC = ÎωI + IωC (41)

Thus, the coordinate-independent angular velocity error vector, δIωC = ÎωC − IωC , may be viewed as either

δIωC = CωĈ or δIωC = ÎωI (42)

Recalling the description of how the platform INS uses the gyro output, it is clear that for the platform
system, the gyro error corresponds to a drift of the platform with respect to inertial, and since the platform
represents the INS’s knowledge of the inertial frame, it is clear that the platform’s drift corresponds to ÎωI .
Thus, ψ must be related to ÎωI , according to

Id

dt
ψ = ÎωI (43)

Recalling that the strapdown INS integrates the case-fixed gyro outputs, it is clear that a constant gyro drift
from a strapdown gyro will appear to be constant to an observer who is also fixed in the case frame, and hence
gyro drift from a strapdown INS corresponds to CωĈ , or

Cd

dt
θ = CωĈ (44)

Thus, depending on whether the INS is of the platform type or the strapdown type, a constant gyro output bias
will appear to be constant relative to the inertial frame, or constant relative to the case frame, respectively.
These gyro biases will integrate into a misalignment ψ with respect to the inertial frame (platform INS), or
into a possibly different misalignment θ with respect to the case frame (strapdown INS). Note that one is free
to write the equations of motion with respect to any frame one chooses, so that for example the following are
completely permissible expressions:

Id

dt
θ = CωĈ + IωC × θ and

Cd

dt
ψ = ÎωI − IωC ×ψ (45)

Henceforth, we only consider strapdown INS. For many such systems, the gyro error may be modeled as

δIωCC = CωĈC = bgC + Sg
IωCC + Γg

IωCC + εω, (46)

where bgC is an angular velocity in the case frame that biases the gyro, Sg is the gyro scale factor matrix, Γg

is the gyro nonorthogonality matrix, IωCC is the representation of IωC in coordinates fixed to the INS case, εω

is a Gaussian white noise that produces angular random walk, and where

Sg =

 Sgx 0 0
0 Sgy 0
0 0 Sgz

 and Γg =

 0 0 0
−γgyz 0 0
γgzy −γgzx 0

 . (47)

Here, the elements of the matrix Sg represent scale factor errors, and the elements of the matrix Γg represent
nonorthogonality errors. The latter arise from the fact that (for example) the y gyro will measure not only the
angular velocity about Cy as it is intended to, but also a small projection of the angular velocity about Cx ¶.

¶Here we assume that as part of the INS calibration procedure, the x gyro is defined to be co-linear with the case x axis, the x-y
case frame is defined to include the y gyro, and misalignments of the y and z gyros from the two axes orthogonal to this reference are
measured. In practice, the case frame is defined by an alignment device such as an optical corner cube attached to the outside of the
case, and the relationship between the frame defined externally by the optical cube and the internally-defined case frame is loaded into
the INS’s firmware.
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Accelerometer Model

Since we have assumed a strapdown INS, the accelerometers measure the case coordinates of the “sensed
acceleration”, aC , i.e. that part of the second time derivative of r, the INS position vector, with respect to an
inertial frame, which is due to non-gravitational, or “contact,” forces. If the INS is located at the spacecraft
center of gravity (c.g.), r represents the spacecraft position vector as well. If not, the accelerometer will
measure not only the external acceleration on the spacecraft, but also the linear acceleration at the c.g. to
INS moment arm due to any spacecraft rotational motion. This must be subtracted from the INS measured
acceleration, typically by the navigation software. This model does not explicitly include the effect INS errors
have on this c.g. offset calculation.

For many strapdown accelerometers, we may assume that the error may be modeled as

δaC = baC + SaaC + ΓaaC , (48)

where baC is the accelerometer bias, Sa is the accelerometer scale factor matrix, Γa is the accelerometer
nonorthogonality matrix, and where

Sa =

 Sax 0 0
0 Say 0
0 0 Saz

 , Γa =

 0 0 0
−γayz 0 0
γazy −γazx 0

 . (49)

Combined Model

It is convenient to recast Eqs. 46 and 48 as follows. Define D(IωCC ) = diag(IωCC ), and sg = [Sgx, Sgy, Sgz]T.
Then Sg

IωCC = D(IωCC )sg . Similarly, define D(ac) = diag(ac), and sa = [Sax, Say, Saz]T. Then Saac =
D(ac)sa. Define γg and F(IωCC ) such that Γg

IωCC = F(IωCC )γg , i.e. γg = [γgyz, γgzy, γgzx]T, and

F(IωCC ) =

 0 0 0
−IωCCx 0 0

0 IωCCx −IωCCy

 . (50)

Similarly, define γa and F(aC) such that ΓaaC = F(aC)γa. Then, Eqs. 46 and 48 may be written as

δIωCC = bgC + D(IωCC )sg + F(IωCC )γg + εω (51)
δaC = baC + D(aC)sa + F(aC)γa (52)

Now, let xg = [θT

C ,b
T

gC , s
T
g,γ

T
g ]T
. Then, one can rewrite Eq. 46 as

Cd
dt θC
Cd
dt bgC

d
dt sg
d
dtγg

 =
[

O3×3 I3 D(IωCC ) F(IωCC )
O9×12

]
xg +

[
I3

O9×3

]
εω (53)

ẋg = Agxg + Bgεω, (54)

where we have chosen to write the equations of motion for the gyro misalignment and drift with respect to
the case frame, and we recall that since the scale factor and nonorthogonality coefficients are only shown as
column arrays for convenience, they are not properly viewed as physical vectors that take derivatives in any
particular coordinate system. In similar fashion, let xa = [bT

aC , s
T
a,γ

T
a]T, with ẋa =

Cd
dt xa = 0, and cast the

acceleration error δac as

δaC =
[

I3 D(aC) F(aC)
]

xa (55)
= Haxa. (56)
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We refer to the combination of the two models above as our Inertial Measurement Unit (IMU) model.
When we integrate these results to produce position and velocity errors, we have a full INS model. When
an INS incorporates sensed acceleration into its computation of the total acceleration on the vehicle, its gyro
misalignment will corrupt the calculation:

Îd

dt
vI = − µ

r̂3
r̂I + M̂IC âC (57)

≈ − µ
r3

rI + G(rI)δrI + MIC [I− θ×C ](aC + δaC) (58)

where the gravity gradient matrix, G(rI), is the Jacobian of the two-body gravity term, −µrI/r3. Thus, to
first order, we may approximate the total acceleration error equations of motion as

Id

dt
δvI = G(rI)δrI + MICa

×
C θC + MICδaC (59)

These models may be combined as follows:
Id
dt δrI
Id
dt δvI

ẋa

ẋg

 =


O3×3 I3 O3×9 O3×12

G(rI) O3×3 MICHa MICXag

O12×3 O12×3 O9×9 O12×12

O12×3 O12×3 O9×9 Ag




δrI
δvI
xa

xg

+
[

O15×3

Bg

]
εω (60)

ẋ = Ax + Bεω (61)

where Xag = [a×C ,O3×9] couples the gyro and accelerometer errors.

EXAMPLE
Next, we describe our example problem, then use the generalized covariance method to analyze the per-

formance and sensitivities of the inertial navigation system.

Description of Example Problem

In our example, we assume that a global navigation satellite system type of receiver provides vector mea-
surements of position throughout an entry trajectory, with measurement noise standard deviation three times
less than the estimator assumes. Figs. 1 and 2 show some salient characteristics of the example. The sim-
ulation begins after the de-orbit burn, and one sees in the top plot of Fig. 1 that the vehicle reaches a peak
deceleration of about 12× Earth’s surface gravity about half-way through the entry. The vehicle executes 14
bank maneuvers, which are a combination of rolls and yaws, as the top and bottom plots of Fig. 2 show, so
as to control its landing point. The middle and bottom plots of Fig. 1 show accelerations from side forces
created by the vehicle’s lift during these bank maneuvers.

A Monte Carlo simulation produced the gyro and accelerometer error data that Figs. 1 and 2 also show.
This simulation assumed that the elements of θC(to), bgC , sg , γg , baC , sa, γa and εω are zero mean, timewise
uncorrelated, Gaussian-distributed random processes, and are uncorrelated with one another. Table 1 lists the
relevant simulation parameters that we used.

Navigation Analysis of Sample Problem

In using any linear covariance analysis method, we always recommend at least one actual simulation as a
check against linearization problems. In the present work, we generate random deviations from the reference
as initial conditions for each of 25 Monte Carlo cases. We integrate each deviated case, and use this as truth
for measurement simulation and estimation error generation. From these, we generate the time series of
estimation errors and residuals for each case.
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Table 1 Simulation Parameters

Parameter Standard Deviation Units

Gravitational Constant 4.305× 104 km3/sec2

Measurement Time Interval 2 sec
True Position Measurement Noise 0.305 m
Formal Position Measurement Noise 0.914 m
Initial Position Error 30.5 meters
Initial Velocity Error 3.05 cm/sec
Accelerometer Bias 60 µg
Accelerometer Scale Factor 500 ppm
Accelerometer Nonorthogonality 10 ppm
Initial Gyro Angular Error 42 arcsec
Gyro Bias Drift 0.01 deg/hr
Gyro Scale Factor 33 ppm
Gyro Nonorthogonality 20 ppm
Gyro Random Walk Intensity 0.025 deg/hr1/2

Description of Plots We will be discussing a number of plots below, and it will be helpful to describe our
plot conventions in some detail before delving into the results themselves.

A typical output of Monte Carlo simulations is the ensemble of the time histories of the true estimation
errors, along with their formal errors, which are the standard deviations from the diagonals of the estimator’s
covariance matrix. Fig. 4 is an example of such a result. In this and similar figures to follow, we plot the true
error time series as a sheaf of yellow lines, and the ensemble mean of the true errors as a single blue line.
We plot the empirical ensemble deviation of the true errors as a thick cyan band that covers ±1 to ±3σ’s.
We show twice the true standard deviation from the linear covariance analysis as a series of black + marks.
We show twice the ensemble mean of the formal standard deviations from the Monte Carlo analysis as a
series of green + marks. We compute a 95% confidence interval based on a hypothesis test of the variance
of the Monte Carlo results against the true variance from the linear covariance analysis, which we show as
a translucent red band bounded by red + marks. These sorts of results are available from existing linear
covariance and Monte Carlo simulation procedures.

We have chosen to illustrate the capability of the generalized covariance method to partition the covari-
ance using what we call “variance sandpiles,” which are stacked area charts showing the time series of each
solve-for variance’s contribution from a priori error variance, measurement noise variance, and process noise
variance. Fig. 7 is an example of such a result. Here, we plot the components of the true variance as a posi-
tive sandpile, and the components of the formal variance as an inverted sandpile on the negative ordinate, and
relabel the negative ordinate to indicate this‖.

A useful result of many types of covariance analysis is an error budget showing the sensitivity of each
solve-for parameter to errors in the consider parameters. We show such results as “sensitivity mosaics,”
which are checkerboard plots of the log magnitude of the elements of the sensitivity matrices. Fig. 8 is an
example of such a plot.

Results We performed a number of studies of our example problem using the generalized method, which
we briefly summarize before discussing our final results. First, we solved for all of the states in the INS model
to study the observability of the various states. From this work, we concluded that accelerometer bias was
weakly observable and accelerometer scale factor was strongly observable along the two directions generally

‖Depending on the relative magnitudes of these results, we could also illustrate the sandpiles in other ways, e.g. if all the delta
variances were positive, the sandpile could show the formal variance, and the deltas due to each component. If all the deltas were
negative, the sandpile could show the true variance, and negatives of the deltas.
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normal to the drag acceleration. Accelerometer nonorthogonality and all of the gyro rate errors were not
observable. Gyro misalignment was strongly observable, along with position and velocity. Based on these
results, we next examined various combinations of observable states as solve-for parameters. Among these
combinations, we studied (1) solving for position, velocity, accelerometer bias and scale factor, and gyro
misalignment; (2) solving for only position and velocity; and (3) solving for linear combinations of the
observable accelerometer and gyro states. The latter was particularly easy with the generalized formulation,
since we needed only to modify the S and C matrices. From this work, we concluded that the best performance
was available from case (1). Figs. 3 – 8 show the results from this case we obtained with the sequential form
of the method. Finally, we studied this case using the batch estimator. Although this produced comparable
results, we found that the large size of the Υ matrix, by which the batch form captures the effect of process
noise, caused the batch analysis to take considerably longer to run.

Discussion There are several notable features of Fig. 3, which shows the Monte Carlo and linear covari-
ance results for the position states∗∗. The agreement between the true standard deviation from the linear co-
variance analysis (black + marks) and the ensemble mean of the formal standard deviations from the Monte
Carlo analysis (green + marks) indicates that nonlinearities are not significantly affecting the results. These
are bounded by the Monte Carlo confidence interval (red band), indicating that the null hypothesis, which is
that the Monte Carlo cases actually are governed by the moments of the linear covariance analysis, cannot
be rejected at the 95% confidence level. The large sawtooth increases in the errors between measurement
updates lead us to suspect that process noise, which only comes from gyro random walk in this example, is a
strong factor influencing performance.

The position variance sandpiles (left column of Fig. 6) allow us to confirm that the spikes are due to
process noise. They also show that measurement noise is a significant contributor to the formal variance, but
not the true variance (recall that the simulation was run with three times less measurement noise on the true
measurements than the filter assumed). Referring to the sensitivity mosaic in Fig. 8, we can see that the IMU
parameters, especially gyro drift, are significant contributors to position and velocity errors.

Considering now the accelerometer and gyro errors in Figs. 4 – 5, we see that the z-component of the
accelerometer scale factor error somewhat exceeds the 95% confidence limit during the initial convergence
of the filter, possibly indicating stronger nonlinear effects not captured by the linear covariance analysis
(Fig. 4). Once the z-component of the gyro angular error converges after t = 40 (Fig. 5), the confidence
interval violation for the accelerometer scale vector stops, suggesting that the cross-product between gyro
angular error and sensed acceleration is playing a role. The sandpiles for the weakly observable accelerometer
parameter variances (Fig. 7) are dominated by a priori error, while the strongly observable gyro angular error
variance sandpile (right column of Fig. 6) is dominated by process and measurement noise, as with the other
strongly observable states.

SUMMARY AND CONCLUSION

We have updated and extended previous work on linear covariance analysis and used our generalized
method to study the navigation performance of an inertial navigation system during an entry trajectory. As
part of this work, we clarified some issues concerning the equations of motion for modeling attitude errors.

We showed that sensing drag acceleration during the entry, along with position measurements from a GPS-
like device, allows the INS to update its attitude error states. We found that the linear covariance analysis
results agreed well with a 25-case Monte Carlo simulation, indicating the lack of any strongly nonlinear
effects in our example problem. Using the unique capability of the generalized method to partition the errors,
we were able to quantify the extent to which process and measurement noise dominate the performance in
estimating the strongly observable states, and to quantify the extent to which a priori error strongly affects the
performance in estimating the weakly observable states. We illustrated the sensitivity of the INS to various
unobservable parameters, and showed that position and velocity errors are strongly sensitive to gyro bias.

∗∗Velocity results are generally similar to position, so we omit them for brevity.
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Figure 1 Monte carlo simulation of case coordinates of accelerometer errors (left scale, solid
blue lines) and their formal 3σ values (left scale, dotted blue lines), shown with reference accel-
erations (right scale, dashed red lines); the x, y, and z coordinates are shown in the top, middle,
and bottom subplots, respectively.
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Figure 2 Monte carlo simulation of case coordinates of gyro rate errors (left scale, solid blue
lines) and their formal 3σ values (left scale, dotted blue lines), shown with reference body rates
(right scale, dashed red lines); the x, y, and z coordinates are shown in the top, middle, and
bottom subplots, respectively.
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Figure 3 Position Errors from 25-case Monte-Carlo Simulation.
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Figure 4 Accelerometer Scale Factor Errors from 25-case Monte-Carlo Simulation.
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Figure 5 Gyro Angular Errors from 25-case Monte-Carlo Simulation.
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(a) X-component of Inertial Position Error
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(b) X-component of Case-Fixed Gyro Angular Error
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(c) Y -component of Inertial Position Error
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(d) Y -component of Case-Fixed Gyro Angular Error
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(e) Z-component of Inertial Position Error
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(f) Z-component of Case-Fixed Gyro Angular Error

Figure 6 Position Error (a,c,e) and Gyro Angular Error (b,d,f) Variance Sandpiles (plotted vs. sample number).
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(a) X-component of Case-Fixed Accelerometer Bias
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(b) X-component of Case-Fixed Accelerometer Scale Factor
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(c) Y -component of Case-Fixed Accelerometer Bias
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(d) Y -component of Case-Fixed Accelerometer Scale Factor
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(e) Z-component of Case-Fixed Accelerometer Bias
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(f) Z-component of Case-Fixed Accelerometer Scale Factor

Figure 7 Accelerometer Bias (a,c,e) and Scale Factor (b,d,f) Variance Sandpiles (plotted vs. sample number).
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Figure 8 Sensitivity of solve-for errors to variations in a priori parameter specifications. The
solve-for indices are as follows: 1–3, position; 4–6, velocity; 7–9, accelerometer bias; 10–12,
accelerometer scale factor; 13–15, gyro angular error.
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